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Known second-order models are verified in a test problem of an isotropic velocity 
field with a constant temperature gradient. 

Despite the extensive utilization of second-order velocity field models for the solu- 
tion of practical shear turbulence problems (for instance, the k - e u Launder model, etc. 
[I]), up to now no equivalents are known in completeness of description and incontroverti- 
bility of the experimental data of the second-order model of an inhomogeneous scalar field. 
Known attempts of the construction of such models are limited to the simplest form of sca- 
lar field turbulence being realized in the wake behind a heated grating. The velocity field 
in such a flow is described by the system of equations 

dq2 - -  2eu, 
dt 

2 deu eu 
d--/- = -- F~ q---~-, 

where the coefficient F u equals 11/3 for strong turbulence (Rx + ~). 
scalar fluctuation is here described by the equation 

An equation for e c in the form 

(1) 

The rms value of the 

d~ (2 )  
dt = -- 2ec. 

dec =-- vF Z.s (3) 

dt % 

was proposed in [2-3], where the time scale T e was either taken equal to the velocity field 
scale ~ = Teu = q2/E u or the scalar field scale ~E = TEC = cF/eC" As experimental data 
accumulated, generalized in [4], the unsatisfactoriness of (3) was shown. The mentioned 
Warhaft and Lumley paper initiated a number of theoretical and numerical investigations on 
modeling a degenerating isotropic scalar field. Thus, an equation for e c in the form 

d~_ ~I 8---i-~ ~ ~__t_~, (4) 

was p r o p o s e d  i n  [ 5 - 7 ] ,  whe re  t h e  c o e f f i c i e n t s  e q u a l  5 / 3  and 2, r e s p e c t i v e l y ,  a s  R~ ~ ~ and 

P~ + ~ ,  wh ich  s a t i s f a c t o r i l y  d e s c r i b e d  ( i n  c o m b i n a t i o n  w i t h  ( 2 )  and ( 1 ) )  t h e  dynamics  o f  a 
s c a l a r  f i e l d  b e h i n d  a h e a t e d  " m a n d o l i n "  p l a c e d  i n  t h e  wake b e h i n d  a t u r b u l e n t  g r a t i n g .  

I n  t h e  g e n e r a l  c a s e  o f  an i nhomogeneous  s c a l a r  f i e l d ,  t h e  e q u a t i o n s  f o r  c 2 and ~c a s  
w e l l  a s  t h e  e q u a t i o n  f o r  t h e  s t r e a m  ~2c  c o n t a i n  a number  o f  unknown t e r m s ,  whose f o r m a l  d e -  
f i n i t i o n  i s  p o s s i b l e  o n l y  t o  t h e  a c c u r a c y  o f  t h e  t i m e  s c a l e s .  To a n a l y z e  t h e  a d e q u a c y  o f  a 
"closed" model of a flow with the gradient of an averaged scalar value in which the inhomo- 
geneous turbulence of a scalar field is formulated, it is expedient to confirm the model 
in test flows including a small quantity of turbulent transfer factors. 

The simplest form of an inhomogeneous field of a passive scalar is realized in an iso- 
tropic velocity field degenerating in the flow direction x I in the presence of a constant 
gradient of the average value of the scalar 8 = - dC/dx 2 = const transverse to the stream. 
Sirivat and Warhaft [8] performed a detailed experimental investigation of the dynamics of 
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Fig. I. Downstream change in the rms temperature 
fluctuations c2/82: i, 2, 3) experiment [8]; solid 
lines are computation; numbers on the computed 
curves correspond to numbering of the formulas in 
the text; "mandolin" geometry (i, j) and gradient 
of the average temperature value [3 are the follow- 
ing: a) (I0.i); 13 = 2.24~ b) (2.2); ~ = 1.78~ 
m; c) (2.1); 13 = 7.480C/m. c=/82-I04 m 2. 

a scalar field in such a flow. The formulation of known second order models for the evolu- 
tion of the scalar field under consideration has the following form for RX ~ i and PX ~ I. 

A model of the first author of the present paper (its detailed exposition is contained 
in [9] for the general case of inhomogeneous velocity fields and a passive scalar) 

du2c 1 1 m ( t 

d t  = . 3  ~q2 3 m - -  9Pc %~ 

6Pc - -  n ) 
~ e c  +" I ' / 2 C '  

dee m - -  9P~ - -  1 u2c e~ 1 5m - -  54P~ ec 
dt  ----2 [ 3 - - - - 2 -  (5)  

m =  1 , 5 n + l ,  n---- 10; 

the Lumley model [I0] 

du2c I 1 - -  p 2 u~c 
=._~__ ~q2 1 +  R + 1,1R ~ 

( 9 1 2,05P~) e--~-~ " dee - - - - - -  2 + 5 R %c 
dt  

d 

t h e  E l g o b a s h i  and Launder  model  [11] 
m B 

du~c 1 u2_____~c 
d t  - -  3 ~q2 __ 4,3 % , 

n 

dec ulc  
dt = 1,8~ v~ 

g 

t h e  E l g o b a s h i  and Launder  model  [11] 

2,2 ec 1,6 e___~_~, % = v ~  = c-~/ec; 
"15"r T e u  

( 6 )  

(7) 

m m 

d u l c  1 uec 
dt = ~ p q l _  8,6 - - ~  , ( 8 )  
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Fig. 2: Downstream change in the transverse heat 
flux u=c/8; notation the same as in Fig. i. u=c/8. 
10 4 ma/sec. 

de= 1,8~ u2c 2,2 e~ 1,6 e~ 
dt "Qc "Qr "Q= ' 

the model of the second author of this paper (see also [9]) 

du='---~ 1 ~ (u'~,c z) (1 + R) u~---c 
dt = -3- ~q - -  ~ c -~ . ~  

dec 5 e~ 2 s~ 4 + 7 R  u~c 

d-----~ = 3 "r "Q~ + ~ [J--"Q. 

(9) 

where Pc = 8u=C/ec is a parameter of the ratio between the generation velocity c 2 because 
of the gradient of the average value of the scalar and the velocity of "dissipation" ec; 
R = ~eu/Tec is the parameter of the ratio between the time scales of the velocity fluctua- 
tion and the scalar substance, p = UaC//~6 = is the correlation coefficient of the trans- 
verse velocity fluctuations and the scalar. The rms value of the scalar fluctuations is 
here described by the equation 

d ~  = 213u2"-'c - -  2ec, ( 1 0 )  
dt 

and the velocity field parameters are determined by the system (i). 

The differences, in principle, between the models presented above are the different 
modes of approximating the "dissipative" term in the equation for the stream u2c and the 
term characterizing generation of the parameter e c because of the scalar substance gradient 
in the equation for e c (different approaches to the approximation of these terms and the 
determination of the constant by the models are contained in the original papers [9-11]). 

On the basis of the models (5)-(9) a numerical modelling of the experiment [8] to esti- 
mate the degree of adequacy of the reflection of the effect of the gradient of the average 
value of the scalar by the models under consideration in the dynamics of the fluctuating 
characteristics of the scalar. 

The Cauchy problem for the system (i) of the velocity field and (5)-(9), (i0) of the 
scalar field was posed for identical initial conditions for each model, which were borrowed 
from experiment [8], for the "mandolin." It should be noted that giving the initial condi~ 
tions for the scalar field parameters corresponding to experiment is not trivial. Indeed, 
the field of scalar fluctuations in direct proximity to the "mandolin" is determined mainly 
by the geometry of the "mandolin," i.e., by local gradients of the average value of the sca- 
lar at the dimensions of hot jets. On the other hand, the models (5)-(9) are formulated 
under the assumption that the scalar fluctuations are generated just by a linear gradient 
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Fig. 3. Downstream change in the parameters of the 
scale ratio R; notation the same as in Fig. !. 

transverse to the stream in the whole domain being considered. Therefore, the initial 
conditions for the Cauchy problem should be selected from experiment for sufficiently large 
distances from the "mandolin" for which the linear gradient of the average value of the 
scalar was known to be formulated. However, these distances should not be so great that the 
parameters p and R would become close to their asymptotic values (if such exist). 

In connection with the mentioned singularity of formation of the scalar fluctuation 
field, experimental data for the evolution of the energetic spectrum of the scalar fluctua- 
tion would be desirable in the experiment [8] for the well-founded selection of the initial 
conditions in the n~nerical modeling. Since there are no such data in [8], the value of the 
dimensionless longitudinal coordinate xm/M at which the influence of the first term in the 
right side of (i0) would approximately equal the second term was selected the point of the 
beginning of the numerical counting for each "mandolin" geometry. Starting with this point, 
the generation of the parameter c 2 because of the transverse gradient 8 exceeds its molec- 
ular "dissipation." 

Results of a computation of the evolution of the temperature fluctuation intensity ~2 
in the longitudinal xl/M coordinate, the transverse heat flux uac, and the scale ratio pa- 
rameter R for different "mandolin" geometries (i " "" ,_3)" and different values of the transverse 
gradient of the average value of the temperature C are presented in Figs. 1-3. Comparison 
of the computed and experimental data shows that the Launder and Elgobashi model (8) with 
the hybrid time scale T E = V~-Teu~ec in the equation for the flux u2c does not possess either 
quantitative or qualitative adequacy for the experiment. The model (7) of these same authors 
describes only the parameters c 2 and u2c satisfactorily just for the "mandolin" geometry 
(2.2). As regards the scale ratio parameter R, the models mentioned demonstrate a rate of 
its change in xl/M that is opposite to experiment. 

The Lumley model (6) yields somewhat better agreement with experiment than the Elgo- 
bashi and Launder model, however, not as superior as is shown in [10]. The fact is that the 
initial conditions for the parameter e c (and therefore for R) were not given from the Siri- 
vat and Warhaft experiment in the paper mentioned but were determined from the condition 
of best agreement between the computed and experimental data for ~2 and u2c. In particular, 
superior agreement is observed (see Fig. 4) between the results of a computation by the 
Lumley model and the data of an experiment for a "mandolin" (i0, i) (the other models under 
consideration, with the exception of the model (8), also yield satisfactory agreement with 
experiment) when the parameter r is given at the point xl/M equal to the experimental value 
diminished 1.5 times (see Fig. 4). However, the evolution of the parameter R (the dashed 
llne in Fig. 3a) here describes the experimental data poorly. 

As regards models (5) and (9) of the authors of this paper, they yield approximately 
identical agreement between the computed and experimental results, with the exception of the 
version (i0, i). 

* The Sirivat and Warhaft [8] notation is used here: i is the dimensionless distance (refer- 
red to the size of the grating cell) of the "mandolin" from the grating, while the index j 
is the dimensionless distance between "mandolin" wires. 
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Fig. 4. Downstream change_in the rms 
temperature fluctuations c2/82 for an 
initial value of the parameter R dimi- 
nished 1.5 times as compared with the 
experimental value; notation the same 
as in Fig. i; (i0, i); ~ = 2.24~ 
~2/~2.10 4 m 2. 

DISCUSSION OF THE RESULTS 

Known second-order models of a scalar field are examined in this paper in a test problem 
on the development of temperature fluctuations in the wake behind a grating during the impo- 
sition of a constant gradient of the average temperature value transverse to the stream on 
an almost isotropic degenerating velocity field. 

The selection of this problem was governed firstly by the fact that the scalar field 
generated by the linear transverse gradient of the average scalar value is the simplest pre- 
presentative of an inhomogeneous field not subjected to turbulent diffusion. This problem 
allows direct investigation of the sensitivity of the model to the generation of a turbulent 
scalar field because of the transverse gradient of an average scalar value. Secondly, the 
dynamics of an inhomogeneous scalar field of this kind is documented well by a careful ex- 
periment [8]. However, the incomplete conformity of the mathematical formulation of the 
problem to the experiment should be noted. It was assumed in the formulation of the problem 
that the transverse constant gradient 8 is the single generator of the scalar field fluc- 
tuations. Two temperature fluctuation generators are actually present in the experiment: 
the "mandolin" strings shaping relatively fine-scale temperature fluctuations, and the trans- 
verse gradient 6 that generate relatively coarse-scale fluctuations. Therefore, two fluc- 
tuating scalar fields are realized in the experiment with different characteristic length 
scales. At sufficiently large distances from the "mandolin" the factor of the transverse 
gradient ~ becomes dominant in the generation of ~2, i.e., a scalar field is realized with 
one characteristic scale. The nonconformity of the experiment data with the computation by 
the models considered above, which are single-scale, is explained certainly by thescalar 
field realized in experiment being two-scale, especially for a "mandolin" significantly 
remote from the grating (for instance, the geometry (I0, i)). The characteristic length 
scale of a fluctuating scalar field in these models is either the Taylor scale kc = /6KC=/EC 
or the scale of the energy containing scalar "vortices" L c = 6qc2/Ec, or the time scale 

~c = c21Ec. 

Therefore, with the exception of the geometry (10, i) for which a two-scale scalar field 
is apparently realized in experiment (at least at distances xl/M achieved in the experiment), 
the most satisfactory agreement between the computed and experimental data is obtained for 
the models (5) and (9). The model (5) developed (see [9]) for inhomogeneous velocity fields 
in the general case and a passive scalar for arbitrary values of the Reynolds and Peclet tur- 
bulence numbers and the Prandtl molecular number, needs further examination in test problems 
for fields of more complex shape. 

NOTATION 

u i, velocity fluctuation component; q2 = ui 2, twice the turbulence kinetic energy; t, time; 
~i, Cartesian coordinates; e u = ~(aui/aXk )2, rate of__dissipation of the turbulence kinetic energy; 
C, average scalar value; c, scalar fluctuation; c 2, rms value of the scalar fluctuation, 
E c = K(ac/axk )2, rate of "blurring" of the scalar fluctuation; I u = ~Svq2/eu, k c = /6-K-~/ec, 
microscales of the vector and scalar fields; R l = qku/V, Pk = qkc/K, turbulent Reynolds and 
Peclet numbers; Teu = q2/e u, TEC = C-~/EC, gradient of the average scalar value; and M, char- 
acteristic grating size. 
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VERTICAL DISPERSION OF INTENSIVE SHEAR 

FLOWS OF LOW-VISCOSITY FLUIDS 
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V. L. Kolpashchikov, S. A. Kuleshov, 
O. G. Martynenko, and A. I. Shnip 
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The method of high-speed visualization is used in conjuction with Doppler-laser 
anemometry to conduct an experimental study of the behavior of cylindrical jet 
of a low-viscosity fluid. A mechanism is proposed for the vertical dispersion 
of the fluid and is substantiated. 

A jet travelling at moderate velocities decays under the influence of capillary forces. 
Rayleigh [i] examined a cylindrical jet the surface of which was subjected to as small a 
disturbance as desired. The source of the initial disturbance, meanwhile, can be either 
inside the channel (roughness, turbulence in the fluid, etc.) or outside (movement of the air 
surrounding the jet). The main characteristics of the jet decay process in this case are 
the length of its continuous part and the size of the drops which are formed. According to 
Rayleigh, the surface of the jet is unstable against disturbances with different wavelengths, 
but there is a wavelength at which pulsations in a jet with a free surface lead to its decay 
and disintegration into drops of a size on the same order of this wavelength %max = 9.027. 
Following Rayleigh, most investigators have maintained that, given sufficiently high dis- 
charge velocities, drops are formed due to instability of the jet surface against wavy dis- 
turbances as a result of an increase in the intensity of these perturbations. Here, we 
examine wave formation on the surface of a fluid with allowance for the dynamic effect of 
the gaseous medium on the surface of the jet. In well-known recent investigations ([2-4, 
etc.]), the transition from Rayleigh decay to atomization is described by means of laws go- 
verning the interaction of a gas with the surface of a free jet and the development of sur- 
face oscillations. These theories are based on the presence of a continuous jet section 
immediately adjacent to the nozzle orifice even at high discharge velocities. In our opi- 
nion, the kinetic energy of the gas transmitted to the liquid in the jet is also a source 
of dissipation and the formation of a new surface, i.e., the interaction of the external 
gaseous medium with the flow of liquid from the nozzle is the deciding factor in the decay 
process. Other investigators are not convinced that there is a continuous section even for 
moderate discharge velocities [5]. It is therefore of special interest to develop a method 
and conduct experiments which will make it possible to reliably determine the flow pattern 
at the nozzle outlet. The development of laser methods of diagnosis - in particular, Dop ~ 
pler-laser anemometry - and methods for high-speed visualization of two-phase flows makes it 
possible to conduct such studies. The diagnostic apparatus should have a high resolving 
power with respect to space and time and allow measurement of the velocity distribution in 
the cross section of the jet both at the orifice of the nozzle and in other characteristic 
sections. The equipment should also permit determination of the character of the drop-size 
distribution in these sections. 
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